
BRUNN-MINKOWSKI AND PRÉKOPA-LEINDLER’S
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Abstract. Brunn-Minkowski’s theorem says that vol
(
(1−λ)K+λL

)1/n
,

for K, L convex bodies, is a concave function in λ, and assuming a com-
mon hyperplane projection of K and L, it is known that the volume itself
is concave. The ‘a priori’ natural hypothesis of a common (n− k)-plane
projection of the sets turned out in the end not to imply the (1/k)-th
concavity of the volume function. In this paper we show which is the,
somehow, best projection type assumption that is needed in order to

get concavity for vol
(
(1−λ)K +λL

)1/k
, characterizing also the equality

case in the corresponding inequality. Moreover, we consider the same
problem for its functional analogue: the Prékopa-Leindler inequality.

1. Introduction

Let Kn be the set of all convex bodies, i.e., nonempty compact convex
sets, in the n-dimensional Euclidean space Rn. The n-dimensional volume
of a measurable set M ⊂ Rn, i.e., its n-dimensional Lebesgue measure, is
denoted by vol(M) (or voln(M) if the distinction of the dimension is useful).

Relating the volume with the Minkowski (vectorial) addition of convex
bodies, one is led to the famous Brunn-Minkowski inequality. One form of
it states that if K,L ∈ Kn and 0 ≤ λ ≤ 1, then

(1.1) vol
(
(1− λ)K + λL

)1/n ≥ (1− λ)vol(K)1/n + λvol(L)1/n,

i.e., the n-th root of the volume is a concave function. Equality for some
λ ∈ (0, 1) holds if and only if K and L either lie in parallel hyperplanes or
are homothetic.

The functional version of the Brunn-Minkowski inequality is known as
the Prékopa-Leindler inequality ([13, 19], see also [10, Theorem 8.14]). It
states that if λ ∈ (0, 1) and f, g, h : Rn −→ R≥0 are non-negative measurable
functions such that, for any x, y ∈ Rn,

h
(
(1− λ)x + λy

) ≥ f(x)1−λg(y)λ,

2010 Mathematics Subject Classification. Primary 52A20, 52A40, 26D15; Secondary
52A38, 26B25.

Key words and phrases. Brunn-Minkowski’s inequality, projections of convex bodies,
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then ∫

Rn

h(x) dx ≥
(∫

Rn

f(x) dx

)1−λ (∫

Rn

g(x) dx

)λ

.

The Brunn-Minkowski inequality is one of the most powerful results in
Convex Geometry and beyond: for instance, its previously mentioned equiv-
alent analytic version and the fact that the convexity/compactness assump-
tion can be ‘weakened’ to consider just Lebesgue measurable sets (see [14]),
have allowed it to move in much wider fields. It implies very important
inequalities as the isoperimetric and Urysohn inequalities (see e.g. [22,
p. 382]) or even the Aleksandrov-Fenchel inequality (see e.g. [22, s. 7.3]),
and it has been the starting point for new developments like the so called
Lp-Brunn-Minkowski theory (see e.g. [15, 16]), a Brunn-Minkowski result
for integer lattices (see [8]), or a reverse Brunn-Minkowski inequality (see
e.g. [17]), among many others. It would not be possible to collect here
all references regarding versions, applications and/or generalizations on the
Brunn-Minkowski inequality. So, for extensive and beautiful surveys on
them we refer to [1, 7].

In [3, s. 50], the following linear refinement of the Brunn-Minkowski in-
equality was obtained for convex bodies having a hyperplane projection of
the same measure (see also [9, ss. 1.2.4]). To state this result we need to
introduce some notation: the set of all k-dimensional (linear) planes of Rn

will be denoted by Ln
k (in the same way, for H ∈ Ln

k , we will write for short
Ln

i (H) to denote the set of all i-dimensional (linear) planes of Rn which
are contained in H). Moreover, if K ∈ Kn, the orthogonal projection of K
onto H will be denoted by K|H, and with H⊥ ∈ Ln

n−k we will represent the
orthogonal complement of H.

Theorem A ([3]). Let K, L ∈ Kn be convex bodies such that there exists
a hyperplane H ∈ Ln

n−1 with voln−1(K|H) = voln−1(L|H). Then, for all
λ ∈ [0, 1],

(1.2) vol
(
(1− λ)K + λL

) ≥ (1− λ)vol(K) + λvol(L).

We observe that the above theorem does not mean that the volume func-
tional is concave. In order to assure the volume concavity one should assume
a common hyperplane projection itself (see [22, Note 3 for Section 7.7]).

In [20, Theorem 1.2] it was shown that, under the assumption of Theo-
rem A, (1.2) holds with equality if and only if either K and L lie in parallel
hyperplanes or one of them, say K, is a sausage with respect to the other
body, L, namely,

(1.3) K = σ + L, with σ ∈ Kn, dimσ ≤ 1.

There exists a general version of the Brunn-Minkowski inequality for
mixed volumes (see e.g. [22, Theorem 7.4.5]) and, in [21], Schneider proved
in a very elegant way that even this general one admits a refinement of the
above type, unifying different results in the literature about this topic (see
also [22, s. 7.7]): if K,L ∈ Kn are such that there exists H ∈ Ln

n−1 with
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K|H = L|H, then any mixed volume (in particular, the volume) of the
convex combination (1− λ)K + λL is a concave function in λ ∈ [0, 1].

At this point it can be natural to wonder whether the concavity of the
functional vol((1− λ)K + λL)1/k may be achieved under certain conditions
on K and L involving projections onto (n − k)-planes, k ∈ {2, . . . , n − 1}.
In relation to the precedent results, one might think that the appropriate
hypothesis would be to consider bodies with a common projection (or equal
measure projection) onto an (n − k)-plane. However, in [11] it was shown
that this assumption is not enough:

Counterexample 1.1. There exist two convex bodies K,L ∈ Kn, n ≥ 3,
with a common (n − 2)-dimensional projection K|H = L|H, H ∈ Ln

n−2,
such that, for all λ ∈ (0, 1),

(1.4) vol
(
(1− λ)K + λL

)1/2
< (1− λ)vol(K)1/2 + λvol(L)1/2.

For instance, in dimension 3, examples of convex bodies having a common
1-dimensional projection and satisfying (1.4) are L = B3 and K = M + B3

(see Figure 1, left), where M ∈ K2 is a planar convex body such that its
area and perimeter verify a certain condition (see [11, eq. (11)]); as usual,
Bn denotes the n-dimensional Euclidean unit ball. The common projection
is obtained onto H = (linM)⊥, being linM the linear hull of M .

H

Figure 1. The left-hand convex body and B3 satisfy (1.4);
the right-hand set and B2 × [−1, 1] satisfy (1.5).

It is an easy computation to check that if the ball B3 is replaced by
the archimedean cylinder C = B2 × [−1, 1] in the above construction (see
Figure 1, right), then the expected inequality

(1.5) vol
(
(1− λ)K + λL

)1/2 ≥ (1− λ)vol(K)1/2 + λvol(L)1/2

holds. We observe that the main difference between both examples is a
kind of “tomographic discrepancy”: for any plane H̄ containing H, the set
M +B3 (also B3) has sections (M +B3)∩ (u+ H̄), (M +B3)∩ (v + H̄) (for
suitable u, v ∈ H̄⊥) having different projections onto H, whereas it does not
occur when L = C (with an appropriate choice of H̄). In other words, when
considering C and M + C, the condition on the projection is guaranteed
over every section through parallel planes to H̄.
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In this paper we look for, in the above sense, the best possible condition
to be assumed in order to obtain the desired inequality. The next theorem
provides a solution to this question (see Remark 2.1).

Before stating the result, we need the following additional notation, which
will be used throughout the paper: given K ∈ Kn and H̄ ∈ Ln

n−m, we write

K(u) =
{
x ∈ K : x = u + y, y ∈ H̄

}
= K ∩ (u + H̄)

for any u ∈ H̄⊥ such that K ∩ (u + H̄) 6= ∅. We observe that K(u) depends
on the chosen hyperplane H̄; we will use however this notation in order
not to make it more involved and because no distinction will be necessary.
Moreover, for the sake of brevity, and throughout the paper, the expression
“for any u ∈ H̄⊥” when referring to a section K(u) will mean “for any
u ∈ H̄⊥ such that K ∩ (u + H̄) 6= ∅”.

Theorem 1.1. Let k ∈ {1, . . . , n}, n ≥ 3, and let K, L ∈ Kn be convex
bodies such that there exist H̄ ∈ Ln

n−k+1 and H ∈ Ln
n−k(H̄) satisfying

(1.6) voln−k

(
K(u)|H)

= voln−k

(
L(v)|H)

for any u, v ∈ H̄⊥.

Then, for all 0 ≤ λ ≤ 1,

(1.7) vol
(
(1− λ)K + λL

)1/k ≥ (1− λ)vol(K)1/k + λvol(L)1/k.

This result will be proved in Section 2, where also the equality case in
(1.7) will be characterized (Theorem 2.1). At the beginning of the section,
we will briefly discuss about condition (1.6), which is not so restrictive as it
might look.

Regarding the Prékopa-Leindler inequality, and following the spirit of
the above refinements for the Brunn-Minkowski inequality, the analogue of
Theorem A was proved in [6]: under an equal projection assumption for
the functions f and g, the Prékopa-Leindler inequality becomes linear in λ.
The authors also proved that this linearity can be achieved under the less
restrictive hypothesis that the integral of the projections coincide. Moreover,
since the Prékopa-Leindler inequality has been generalized using the p-means
Mp, which lead to the so-called Borell-Brascamp-Lieb inequalities (see [2],
[4]), in [6, Theorem 1.6] the above linearity is obtained in this more general
setting. In Section 3 all the definitions and explanations of the involved
notions can be found.

Theorem B ([6]). Let f, g : Rn −→ R≥0 be p-concave functions, with
−1/n ≤ p ≤ ∞. Let λ ∈ (0, 1) and let h : Rn −→ R≥0 be a non-negative
measurable function such that

(1.8) h
(
(1− λ)x + λy

) ≥ Mp

(
f(x), g(y), λ

)

for all x, y ∈ Rn. If there exists H ∈ Ln
n−1 such that

∫

H
projH(f)(x) dx =

∫

H
projH(g)(x) dx,
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then ∫

Rn

h(x) dx ≥ (1− λ)
∫

Rn

f(x) dx + λ

∫

Rn

g(x) dx.

If we consider the characteristic functions f = χK and g = χL of the con-
vex bodies K, L providing Counterexample 1.1, and we take h = χ

(1−λ)K+λL
,

then we also get a counterexample to the consequent question whether an
inequality of the type

(∫

Rn

h(x) dx

)1/2

≥ (1− λ)
(∫

Rn

f(x) dx

)1/2

+ λ

(∫

Rn

g(x) dx

)1/2

can be obtained if there exists an equal (integral) projection for the functions
f and g onto an (n− 2)-dimensional plane.

In Section 3 we provide the best possible condition to be assumed in order
to obtain the desired inequality: again, equality on (the integral of) projec-
tions of “sections” fu, gu′ of the functions will be necessary (see Section 3
for the proper definition). We prove the following result, which general-
izes Theorem B when k = 1 and provides us with a more general setting
(cf. Corollary 2.1) in which the (1/k)-powered Brunn-Minkowski inequality
holds. To this respect we also point out that, for the sake of simplicity, here
we present this result for p-concave functions, although it could be set in a
wider context. The reason is that in the proof we apply Theorem B but,
nevertheless, a more general version of it for arbitrary measurable f and g
is also true (see [6, Theorem 4.3]), provided that two mild (but technical)
measurability assumptions hold. As usual in the literature, | · |1 will denote
the 1-norm, i.e., |f |1 =

∫
Rn |f(u)|du, for f : Rn −→ R measurable.

Theorem 1.2. Let f, g : Rn −→ R≥0 be p-concave functions, −1/n ≤
p ≤ ∞, with |f |1, |g|1 6= 0. Let λ ∈ (0, 1) and let h : Rn −→ R≥0 be
a non-negative measurable function satisfying (1.8) for all x, y ∈ Rn. Let
k ∈ {1, . . . , n} and assume that there exist H̄ ∈ Ln

n−k+1 and H ∈ Ln
n−k(H̄)

such that ∫

H
projH(fu)(x) dx =

∫

H
projH(gv)(x) dx

for any u, v ∈ H̄⊥. Then
(∫

Rn

h(x) dx

)1/k

≥ (1− λ)
(∫

Rn

f(x) dx

)1/k

+ λ

(∫

Rn

g(x) dx

)1/k

.

2. The (1/k)-powered Brunn-Minkowski inequality

Along this paper, we denote by ei the i-th canonical unit vector, and we
write [x, y] for the (closed) segment with end-points x, y ∈ Rn.

Before the proof of the theorem, we would like to observe that condition
(1.6) in Theorem 1.1 is not too restrictive, in the sense that it implies no
“similarity” in the geometry of the sets. For instance, the following convex
bodies in R3 satisfy (1.6) for H̄ = {x2 = 0} and H = {x2 = x3 = 0} (see
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Figure 2): the pyramid K defined as the convex hull K = conv{R, p}, where
R = [0, ae1] + [0, be2] ⊂ {x3 = 0}, a, b > 0, and p ∈ R3\{x3 = 0} satisfies
that p|{x3 = 0} ∈ R; and the cylinder L = [0, µe2] + (b/2)B2, µ > 0, where
the circle B2 ⊂ H̄.

Figure 2. Two convex bodies satisfying (1.6).

Roughly speaking, and using the convexity of the sets, (1.6) means that
each body (K and L) should have the property that all its nonempty sections
by planes parallel to a fixed one have equal projections. Thus, only these
projections must be constant over each convex body (and when considering
different sets they may differ from each other; only their measures should
coincide).

We also notice that, although Theorem 1.1 can be obtained as a conse-
quence of Theorem 1.2 just taking f, g, h as the characteristic functions of
the suitable convex bodies, we need a different proof for Theorem 1.1 in
order to be able to characterize the equality case.

Throughout the paper, for K ∈ Kn and H̄ ∈ Ln
n−k+1, we denote by

ϕK : H̄⊥ −→ R≥0 the function given by

ϕK (u) = voln−k+1

(
K(u)

)
, u ∈ H̄⊥,

and we define the set

Kk =
{
(u, t) ∈ Rk : u ∈ K|H̄⊥, 0 ≤ t ≤ ϕK (u)

}
.

We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1. From (1.6) we also get that

voln−k

(
K(u)|H)

= voln−k

(
K(v)|H)

for any u, v ∈ H̄⊥.

Therefore, Theorem A yields the linear inequality (1.2) for the sets K(u)
and K(v) (for any u, v ∈ H̄⊥), which implies that

ϕK

(
(1− λ)u + λv

)
= voln−k+1

(
K

(
(1− λ)u + λv

))

≥ voln−k+1

(
(1− λ)K(u) + λK(v)

)

≥ (1− λ)voln−k+1

(
K(u)

)
+ λvoln−k+1

(
K(v)

)

= (1− λ)ϕK (u) + λϕK (v)
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(and analogously for ϕL). Therefore, ϕK and ϕL are concave functions,
which shows that Kk, Lk ∈ Kk are convex bodies. Moreover, since

(2.1)
[
(1− λ)K + λL

]
(u) =

⋃

(1−λ)u1+λu2=u

[
(1− λ)K(u1) + λL(u2)

]
,

we get, together again with (1.2) now for the sets K(u) and L(v), that

ϕ
(1−λ)K+λL

(
(1− λ)u + λv

) ≥ voln−k+1

(
(1− λ)K(u) + λL(v)

)

≥ (1− λ)voln−k+1

(
K(u)

)
+ λvoln−k+1

(
L(v)

)

= (1− λ)ϕK (u) + λϕL(v),

(2.2)

and thus we obtain the inclusion

(2.3)
[
(1− λ)K + λL

]
k
⊃ (1− λ)Kk + λLk.

Finally, using Fubini’s theorem, (2.3) and the Brunn-Minkowski inequality
in Rk, we can conclude that

vol
(
(1− λ)K + λL

)1/k = volk
([

(1− λ)K + λL
]
k

)1/k

≥ volk
(
(1− λ)Kk + λLk

)1/k

≥ (1− λ)volk(Kk)1/k + λvolk(Lk)1/k

= (1− λ)vol(K)1/k + λvol(L)1/k,

which proves (1.7). ¤
We notice that Theorem 1.1 generalizes both, the Brunn-Minkowski in-

equality (1.1) and Theorem A. Indeed, if k = n then H = {0}, and hence,
with the usual convention that vol0

({0}) = 1, condition (1.6) trivially holds
and thus we have (1.1); for k = 1 we get H̄ = Rn, which yields K(u) = K,
and so (1.6) becomes the assumption K|H = L|H in Theorem A.

Remark 2.1. We observe that condition (1.6) cannot be weakened in the
sense of increasing the gap between the dimensions of H and H̄, for instance,
assuming that H̄ ∈ Ln

n−k+2 and H ∈ Ln
n−k(H̄). Indeed, let K and L be the

convex bodies providing Counterexample 1.1, and let H ∈ Ln
n−2 be the (n−2)-

plane such that K|H = L|H. Then H̄ = Rn, and condition (1.6) turns into
K|H = L|H. Therefore (1.7) (for k = 2) does not hold, but (1.4).

From the proof of Theorem 1.1 and taking into account that Bonnesen’s
theorem (Theorem A) also holds in the more general setting of compact
sets (see [18]), it can be easily shown that Theorem 1.1 also holds true for
compact sets (not necessarily convex):

Corollary 2.1. Let k ∈ {1, . . . , n}, n ≥ 3, and let A,B ⊂ Rn be nonempty
compact sets such that there exist H̄ ∈ Ln

n−k+1 and H ∈ Ln
n−k(H̄) satisfying

voln−k

(
A(u)|H)

= voln−k

(
B(v)|H)

for any u, v ∈ H̄⊥.
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Then, for all 0 ≤ λ ≤ 1,

vol
(
(1− λ)A + λB

)1/k ≥ (1− λ)vol(A)1/k + λvol(B)1/k.

We would like to point out that we have set the statement of Theorem 1.1
in the setting of convexity because it is needed to characterize the equality
case (see Theorem 2.1 below): for instance, the result collected in [20, The-
orem 1.2], which is strongly used along the proof of Theorem 2.1, relies on
convexity. We also recall that there is no possible characterization for the
equality in the Brunn-Minkowski inequality without convexity.

Next we deal with the equality case in Theorem 1.1. In order to do it, we
need some additional notation. Let ϑK be the sup-norm of ϕK , i.e.,

ϑK = |ϕK |∞ = supu ϕK (u).

Without loss of generality, when dimK = dimL = n, we will assume from
now on that the sets K,L of our theorem satisfy ϑK ≥ ϑL > 0. Then,
denoting by

ϑ = voln−k

(
K(u)|H)

= voln−k

(
L(v)|H) 6= 0

(for any u, v ∈ H̄⊥, cf. (1.6)), we define r : L|H̄⊥ −→ R≥0 as

r(u) =

(
ϑK
ϑL
− 1

)
voln−k+1

(
L(u)

)

ϑ
.

Finally, let σ ⊂ H̄ be a line segment of length 1, which is orthogonal to H
and has its midpoint in H.

Now we state the characterization of the equality when k < n; the case
k = n is just the equality case in the classical Brunn-Minkowski inequality.
Roughly speaking, the result says that in order to have equality in the (1/k)-
powered Brunn-Minkowski inequality, the sections of K must be sausages of
sections of L, where the heights of the corresponding sections are related via
the constant ϑK/ϑL; besides, L (the set having ϑL minimal) has to satisfy
a particular condition regarding its own sections.

Theorem 2.1. Let k ∈ {1, . . . , n − 1}. Under the assumptions of Theo-
rem 1.1, equality holds in (1.7) for some 0 < λ < 1 if and only if K and
L either lie in parallel hyperplanes or verify the following two conditions (if
dimK = dimL = n):

i) L satisfies that, for any u ∈ L|H̄⊥ and all u1, u2 ∈ L|H̄⊥ such that
(1− λ)(ϑK/ϑL)u1 + λu2 =

(
(1− λ)(ϑK/ϑL) + λ

)
u,

(1− λ)
(
r(u)σ + L(u)

)
+ λL(u) ⊃ (1− λ)

(
r(u1)σ + L(u1)

)
+ λL(u2)

(up to translations).
ii) K|H̄⊥ = (ϑK/ϑL)L|H̄⊥ and, for all u ∈ L|H̄⊥,

K

(
ϑK

ϑL
u

)
= r(u)σ + L(u)

(both, up to translations).
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Proof. If K and L lie in parallel hyperplanes, then also (1− λ)K + λL lies
in a hyperplane, and hence equality trivially holds in (1.7).

Now we suppose that, say, dimL < n, which yields dimLk < k. If
equality holds in (1.7) then, in particular, there is equality in the classical
(k-dimensional) Brunn-Minkowski inequality (1.1) for Kk, Lk. Hence, since
dimLk < k, also dimKk < k and Kk, Lk lie in parallel (k − 1)-planes (we
notice that the case dimLk = 0 and dimKk = k is excluded because of
(1.6)). Therefore, dimK < n too, and thus vol

(
(1 − λ)K + λL

)
= 0. This

shows that (1−λ)K +λL lies in a hyperplane parallel to the one containing
L, and therefore also K.

Thus, from now on we assume that both dimK = dimL = n. From the
proof of Theorem 1.1 we get that equality holds in (1.7) for some 0 < λ < 1
if and only if there is equality (a) in (2.3) and (b) in the classical Brunn-
Minkowski inequality (1.1) for Kk, Lk, i.e., if and only if

(a)
[
(1− λ)K + λL

]
k

= (1− λ)Kk + λLk and
(b) Kk, Lk are homothetic.

First, we assume (a) and (b). In order to avoid repetition, in the following,
all sets equalities will be “up to translations”. Since Kk = cLk, we get from
the definition of Kk, Lk that K|H̄⊥ = cL|H̄⊥ and ϕK (cu) = cϕL(u) for all
u ∈ L|H̄⊥; thus, in particular, ϑK = |ϕK |∞ = c|ϕL |∞ = c ϑL. Therefore,
c = ϑK/ϑL and hence

(2.4) Kk =
ϑK

ϑL
Lk.

Moreover,

K|H̄⊥ =
ϑK

ϑL
L|H̄⊥ and

ϕK

(
ϑK

ϑL
u

)
=

ϑK

ϑL
ϕL(u) for all u ∈ L|H̄⊥.

(2.5)

For the sake of brevity, from now on we will write α = ϑK/ϑL. Then, (a)
and (2.4) yields

[
(1− λ)K + λL

]
k

=
(
(1− λ)α + λ

)
Lk,

which, together with (2.5), implies that
(2.6)
ϕ

(1−λ)K+λL

([
(1−λ)α+λ

]
u
)

=
[
(1−λ)α+λ

]
ϕL(u) = (1−λ)ϕK (αu)+λϕL(u)

for all u ∈ L|H̄⊥. Then (cf. (2.2) for αu and u) we get, in particular,

voln−k+1

(
(1− λ)K(αu) + λL(u)

)

= (1− λ)voln−k+1

(
K(αu)

)
+ λvoln−k+1

(
L(u)

)
,

(2.7)

i.e., equality holds in the linear Brunn-Minkowski inequality (Theorem A,
see (1.6)), and therefore K(αu) is a sausage of L(u) in u + H̄ (cf. (1.3)).
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More precisely, K(αu) = `σ + L(u), ` ≥ 0. Now, using (2.5), since

α voln−k+1

(
L(u)

)
= αϕL(u) = ϕK (αu) = voln−k+1

(
K(αu)

)

= voln−k+1

(
`σ + L(u)

)

= voln−k+1

(
L(u)

)
+ `voln−k

(
L(u)|H)

= voln−k+1

(
L(u)

)
+ `ϑ,

we get

` =
(α− 1)voln−k+1

(
L(u)

)

ϑ
= r(u),

which yields

(2.8) K(αu) = r(u)σ + L(u).

Thus, (2.8) and the first condition in (2.5) show ii).
In order to prove i) we observe that

(2.9)
[
(1− λ)K + λL

]([
(1− λ)α + λ

]
u
)
⊃ (1− λ)K(αu) + λL(u)

(cf. (2.1)). But moreover, both sets in the above inclusion have the same
(n − k + 1)-volume; indeed, since K(αu) is a sausage of L(u) (cf. (2.8)),
then the volume of the convex combination (1− λ)K(αu) + λL(u) is linear
(see (2.7)), and thus, together with (2.6), we have the identity

voln−k+1

([
(1− λ)K + λL

]([
(1− λ)α + λ

]
u
))

= ϕ
(1−λ)K+λL

([
(1− λ)α + λ

]
u
)

= (1− λ)ϕK (αu) + λϕL(u)

= voln−k+1

(
(1− λ)K(αu) + λL(u)

)
.

Therefore we have equality in (2.9), and using (2.1) we obtain

(1− λ)K(αu) + λL(u) ⊃ (1− λ)K(αu1) + λL(u2)

whenever (1 − λ)αu1 + λu2 =
[
(1 − λ)α + λ

]
u. It shows i) because (2.8)

holds.
Finally we assume i) and ii), and we have to prove (a) and (b). From ii)

we directly get that K|H̄⊥ = αL|H̄⊥ and the sausage-property K(αu) =
r(u)σ + L(u), which yields

ϕK (αu) = voln−k+1

(
r(u)σ + L(u)

)

= voln−k+1

(
L(u)

)
+ r(u)voln−k

(
L(u)|H)

= voln−k+1

(
L(u)

)
+ r(u)ϑ

= voln−k+1

(
L(u)

)
+ (α− 1)voln−k+1

(
L(u)

)
= αϕL(u).

(2.10)

Therefore, Kk = αLk, which shows (b). In order to prove (a) we first notice
that, since Kk = αLk and we always have the inclusion (2.3), it suffices to
show that

(2.11)
[
(1− λ)K + λL

]
k
⊂ (

(1− λ)α + λ
)
Lk.
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Now we observe that conditions (i) and (ii) imply, for each u ∈ L|H̄⊥, the
inclusion

(1− λ)K(αu) + λL(u) ⊃ (1− λ)K(αu1) + λL(u2),

if u1, u2 ∈ L|H̄⊥ are such that (1 − λ)(αu1) + λu2 =
(
(1 − λ)α + λ

)
u.

This ensures, in particular, (see (2.1)) that the section of (1 − λ)K + λL
corresponding to the vector

(
(1−λ)α+λ

)
u is given precisely by the convex

combination
[
(1− λ)K + λL

]([
(1− λ)α + λ

]
u
)

= (1− λ)K(αu) + λL(u).

Hence, since K(αu) is a sausage of L(u), the volume of (1−λ)K(αu)+λL(u)
is linear (cf. (2.7)), and together with (2.10) we get, for any u ∈ L|H̄⊥,

ϕ
(1−λ)K+λL

([
(1− λ)α + λ

]
u
)

= voln−k+1

(
(1− λ)K(αu) + λL(u)

)

= (1− λ)voln−k+1

(
K(αu)

)
+ λvoln−k+1

(
L(u)

)

= (1− λ)ϕK (αu) + λϕL(u)

=
(
(1− λ)α + λ

)
ϕL(u).

Finally, since
(
(1−λ)α+λ

)
u ∈ (

(1−λ)α+λ
)
L|H̄⊥ = (1−λ)K|H̄⊥+λL|H̄⊥,

the above identity shows (2.11) and, therefore, (a). ¤
Remark 2.2. We observe, on the one hand, that condition i) of Theorem 2.1
is not too restrictive, i.e., it does not imply that L is just a convex body
with “constant sections”. This can be shown by taking a concave function
ξ : [a, b] ⊂ R −→ R≥0 and

L =
⋃

t∈[a,b]

((
C + ξ(t)[−v/2, v/2]

)× {t}
)
,

where C ⊂ H is the (n − 2)-dimensional cube of edge-length 1 and v ∈
H̄ ∩H⊥, |v| = 1. It is easy to check that L satisfies condition i).

On the other hand, one could think that the previously mentioned as-
sumption is redundant and that it could be obtained from the convexity of
the body L. It is easy to check that this condition does not hold in the fol-
lowing 3-dimensional example: we take the ball B2 ⊂ {x3 = 1} and the
orthogonal box D ⊂ {x3 = 0} with edge-lengths π/2, 2; then it suffices to
consider L = conv{B2, D}, any K such that ϑK/ϑL = 2, λ = 1/2, u1 = 1,
u2 = 0 and u = 2/3.

2.1. Minkowski’s first inequality under additional projections as-
sumptions. The well-known Minkowski first inequality (see e.g. [22, The-
orem 7.2.1]) states that for convex bodies K, E ∈ Kn,

(2.12) V
(
K[n− 1], E

)n ≥ vol(K)n−1vol(E),

where V
(
K[n − 1], E

)
stands for the mixed volume of n − 1 times K and

E. For a deep study of mixed volumes we refer to [22, s. 5.1]. Here, we deal
with the corresponding refinement of the above inequality, when working
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with additional projections assumptions. To this aim, and for the sake of
brevity, we will write

S(K; E) = nV
(
K[n− 1], E

)
,

following the standard notation for the surface area.

Theorem 2.2. Let k ∈ {1, . . . , n}, n ≥ 3, and let K, L ∈ Kn be convex
bodies such that there exist H̄ ∈ Ln

n−k+1 and H ∈ Ln
n−k(H̄) satisfying

voln−k

(
K(u)|H)

= voln−k

(
L(v)|H)

for any u, v ∈ H̄⊥.

Then,

(2.13) S(K;E) ≥ vol(K)(k−1)/k
[
(n− k)vol(K)1/k + kvol(E)1/k

]
.

We notice that inequality (2.13) is indeed stronger than (2.12) because, by
the arithmetic-geometric mean inequality (see e.g. [10, Corollary 1.2]), we
have (n− k)vol(K) + kvol(E)1/kvol(K)(k−1)/k ≥ nvol(K)(n−1)/nvol(E)1/n.

Proof. Using the so-called (relative) Steiner formula (see e.g. [10, (14)]) it
is easy to check that

S(K; E) = lim
λ→0+

vol
(
(1− λ)K + λE

)− vol
(
(1− λ)K

)

λ
.

Then, applying Theorem 1.1, we have

S(K; E) ≥ lim
λ→0+

[
(1− λ)vol(K)1/k + λvol(E)1/k

]k
− (1− λ)nvol(K)

λ

= kvol(K)(k−1)/k
(
vol(E)1/k − vol(K)1/k

)
+ nvol(K)

= (n− k)vol(K) + kvol(E)1/kvol(K)(k−1)/k,

which gives the result. ¤

3. On refinements of the Prékopa-Leindler inequality

In this section we present a proof of Theorem 1.2. In order to completely
clarify the statement of this result and to prove it, we need to introduce
further notation and definitions. We start by recalling the notion of p-mean
of two non-negative numbers, p ∈ R ∪ {±∞}, for which we follow [4].

Let a, b > 0 and let λ ∈ [0, 1]. If p ∈ R and p 6= 0, then we set

Mp(a, b, λ) =
(
(1− λ)ap + λbp

)1/p
,

and for the cases p ∈ {0,±∞} we define

M0(a, b, λ) = a1−λbλ

and
M∞(a, b, λ) = max{a, b}, M−∞(a, b, λ) = min{a, b}.
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Finally, if ab = 0, we will define Mp(a, b, λ) = 0 for all p ∈ R ∪ {±∞}.
Furthermore, if p 6= 0, we allow a, b to be ∞, and in that case, Mp(a, b, λ)
will be, as usual, the value which is obtained “by continuity”.

Regarding the functions that are the main object of study in Theorem 1.2,
we give the following definition.

Definition 3.1. A non-negative function f : Rn −→ R≥0 is said to be
p-concave, for p ∈ R ∪ {±∞}, if

f
(
(1− λ)x1 + λx2

) ≥ Mp

(
f(x1), f(x2), λ

)

for all x1, x2 ∈ Rn and all λ ∈ (0, 1).

A 0-concave function is usually called log-concave.
We finally need the notions of “projection” and “section” of a function.

Definition 3.2 (see e.g. [12]). Let f : Rn −→ R≥0 and let H ∈ Ln
n−1 with

normal unit vector ν. The projection of f onto H is the (extended) function
projH(f) : H −→ R≥0 ∪ {∞} defined by

projH(f)(x) = sup
α∈R

f(x + αν).

The geometric meaning of this definition is easy: the (strict) hypograph
of projH(f) is the projection of the (strict) hypograph of f onto H. In
particular, the projection of the characteristic function of a set is just the
characteristic function of the projection of the set.

Definition 3.3. Let f : Rn −→ R≥0 and let H ∈ Ln
m, that we identify

with Rm. For any u ∈ H⊥, the section of f through u + H is the function
fu : H −→ R≥0 defined by fu(x) = f(u, x).

We observe that for the definition of the function projH(fu), u ∈ H̄⊥,
appearing in the hypothesis of the Theorem 1.2, namely, projH(fu)(x) =
supα∈R fu(x + αν), the vector ν is the only normal unit vector (up to the
sign) to H in H̄.

We are now in a position to prove the result.

Proof of Theorem 1.2. Without loss of generality and for the sake of brevity,
throughout the proof any m-plane H ∈ Ln

m will be identified with the coor-
dinate plane {xm+1 = · · · = xn = 0}.

We are going to prove a slightly more general result, from which Theo-
rem 1.2 will be obtained as the particular case m = k:

(3.1)

Claim: Under the hypothesis of Theorem 1.2, for any m ∈ {1, . . . , k}
and any u, v ∈ Rk−m such that |fu|1, |gv|1 6= 0,
(∫

Rn−k+m

h(1−λ)u+λv(x) dx

)1/m

≥ (1− λ)
(∫

Rn−k+m

fu(x) dx

)1/m

+λ

(∫

Rn−k+m

gv(x) dx

)1/m

.
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We will show (3.1) by (finite) induction on m. The case m = 1 is just
Theorem B for the functions fu and fv. So, we will suppose that the claim
(3.1) is true for m ∈ {1, . . . , k − 1}.

Since m ≤ k − 1, for any u, v ∈ Rk−m we may write u = (ū, tu) and
v = (v̄, tv) for some ū, v̄ ∈ Rk−m−1 and tu, tv ∈ R. Given ū, v̄ ∈ Rk−m−1

such that |fū|1, |gv̄|1 6= 0, let F, G,H : R −→ R≥0 be the non-negative
functions given by

F (t) =
∫

Rn−k+m

f(ū,t)(x) dx, G(t) =
∫

Rn−k+m

g(v̄,t)(x) dx,

H(t) =
∫

Rn−k+m

h((1−λ)ū+λv̄,t)(x) dx,

and we write

Cm =
[
(1− λ) |F |1/m

∞ + λ |G|1/m
∞

]m
and θm =

λ |G|1/m
∞

C
1/m
m

∈ (0, 1).

By induction hypothesis, we have that, for any t, t′ ∈ R with F (t), G(t′) 6= 0,

H
(
(1− λ)t + λt′

) ≥
[
(1− λ)F (t)1/m + λG(t′)1/m

]m

= Cm

[
(1− θm)

(
F (t)
|F |∞

)1/m

+ θm

(
G(t′)
|G|∞

)1/m
]m

≥ Cm min
{

F (t)
|F |∞

,
G(t′)
|G|∞

}
,

and hence we get

(3.2)
H

(
(1− λ)t + λt′

)

Cm
≥ min

{
F (t)
|F |∞

,
G(t′)
|G|∞

}
.

We notice also that

sup
t∈R

F (t)
|F |∞

= sup
t∈R

G(t)
|G|∞

= 1,

which yields

(3.3)
{

t ∈ R :
F (t)
|F |∞

≥ s

}
,

{
t ∈ R :

G(t)
|G|∞

≥ s

}
6= ∅

for all 0 < s < 1. Then, (3.2) together with (3.3) imply that
{

t ∈ R :
H

Cm
(t) ≥ s

}
⊃ (1− λ)

{
t ∈ R :

F

|F |∞
(t) ≥ s

}

+λ

{
t ∈ R :

G

|G|∞
(t) ≥ s

}



B-M AND P-L INEQUALITIES UNDER PROJECTION ASSUMPTIONS 15

for all 0 < s < 1, and thus, the Brunn-Minkowski inequality (in R) leads to

vol1

({
t ∈ R :

H

Cm
(t) ≥ s

})
≥ (1− λ) vol1

({
t ∈ R :

F

|F |∞
(t) ≥ s

})

+λ vol1

({
t ∈ R :

G

|G|∞
(t) ≥ s

})
.

Therefore, from the above inequality, and using Fubini’s theorem, we get∫

Rn−k+m+1

h(1−λ)ū+λv̄(x) dx = Cm

∫

R

H

Cm
(t) dt

= Cm

∫ +∞

0
vol1

({
t ∈ R :

H

Cm
(t) ≥ s

})
ds

≥ Cm

∫ 1

0
vol1

({
t ∈ R :

H

Cm
(t) ≥ s

})
ds

≥ Cm

∫ 1

0

[
(1− λ) vol1

({
t ∈ R :

F

|F |∞
(t) ≥ s

})

+ λ vol1

({
t ∈ R :

G

|G|∞
(t) ≥ s

})]
ds

= Cm

(
(1− λ)

∫

R

F

|F |∞
(t) dt + λ

∫

R

G

|G|∞
(t) dt

)

= Cm


(1− λ)

∫

Rn−k+m+1

fū(x) dx

|F |∞
+ λ

∫

Rn−k+m+1

gv̄(x) dx

|G|∞


 .

Finally, the claim (3.1) (for m + 1) is obtained by applying the (reverse)
Hölder inequality (see e.g. [5, Theorem 1, p. 178]) with parameter −1/m to
the latter expression. ¤

We observe that Theorem 1.2 remains true if the assumption |f |1, |g|1 6= 0
is replaced by the weaker condition |ft|1, |gt′ |1 6= 0 for some t, t′ ∈ R, which
is the key point in the final step of the induction process.

Acknowledgement. The authors would like to thank the anonymous referee
for very valuable comments and suggestions.
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[18] D. Ohmann, Über den Brunn-Minkowskischen Satz, Comment. Math. Helv. 29
(1955), 215–222.

[19] A. Prékopa, Logarithmic concave measures with application to stochastic program-
ming, Acta Sci. Math. (Szeged) 32 (1971), 301–315.
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